Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Clin Appl Thromb Hemost ; 28: 10760296221131801, 2022.
Article in English | MEDLINE | ID: covidwho-2162205

ABSTRACT

Acute ischemic stroke (AIS), characterized by high morbidity and mortality, has imposed a considerable burden on society. Despite rapid development in the treatment of AIS, there is still a high risk of recurrence. Furthermore, there is a time delay in waiting for the results of conventional coagulation tests in candidate patients for intravenous thrombolysis therapy. Heterogeneous responses to antiplatelet, intravascular thrombolysis, and endovascular therapies also worsen the situation. Thromboelastography (TEG), as a global and portable detection method for hemostasis, facilitates clinicians in disease monitoring, treatment evaluation, and prognosis prediction in AIS. In this narrative review, we provided a comprehensive summary of the clinical application of TEG in ischemic stroke and gave insights to further studies.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Thrombelastography , Blood Coagulation Tests , Thrombolytic Therapy/methods , Treatment Outcome
2.
Chem Eng J ; 451: 138822, 2023 Jan 01.
Article in English | MEDLINE | ID: covidwho-2003912

ABSTRACT

The novel mutations attributed by the high mutagenicity of the SARS-CoV-2 makes its prevention and treatment challenging. Developing an ultra-fast, point-of-care-test (POCT) protocol is critical for responding to large-scale spread of SARS-CoV-2 in public places and in resource-poor remote areas. Here, we developed a nanoplasmonic enhanced isothermal amplification (NanoPEIA) strategy that combines a nanoplasmonic sensor with isothermal amplification. The novel strategy provides an ideal easy-to operate detection platform for obtaining accurate, ultra-fast and high-throughput (96 samples can be tested together) data. For clinical samples with viral detection at Ct value <25, the entire process (including sample preparation, virus lysis, detection, and data analysis) can be completed within six minutes. The method is also appropriate for detection of SARS-CoV-2 γ-coronavirus mutants. The NanoPEIA method was validated using clinical samples from 21 patients with SARS-CoV-2 infection and 31 healthy individuals. The detection result on the 52 clinical samples for SARS-CoV-2 showed that the NanoPEIA platform had a 100% sensitivity for N and orf1ab genes, which was higher than those obtained using RT-qPCR (88.9% and 90.0%, respectively). The specificities of 31 clinical negative samples were 92.3% and 91.7% for the N gene and the orf1ab gene, respectively. The limits of detection (LoD) of the clinical samples were 28.3 copies/mL and 23.3 copies/mL for the N gene and the orf1ab gene, respectively. The efficient NanoPEIA detection strategy facilitates real-time detection and visualization within ultrashort durations and can be applied for POCT diagnosis in resource-poor and highly populated areas.

3.
Eur J Med Chem ; 240: 114596, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-1982959

ABSTRACT

Boceprevir is an HCV NSP3 inhibitor that was explored as a repurposed drug for COVID-19. It inhibits the SARS-CoV-2 main protease (MPro) and contains an α-ketoamide warhead, a P1 ß-cyclobutylalanyl moiety, a P2 dimethylcyclopropylproline, a P3 tert-butylglycine, and a P4 N-terminal tert-butylcarbamide. By introducing modifications at all four positions, we synthesized 20 boceprevir-based MPro inhibitors including PF-07321332 and characterized their MPro inhibition potency in test tubes (in vitro) and 293T cells (in cellulo). Crystal structures of MPro bound with 10 inhibitors and cytotoxicity and antiviral potency of 4 inhibitors were characterized as well. Replacing the P1 site with a ß-(S-2-oxopyrrolidin-3-yl)-alanyl (Opal) residue and the warhead with an aldehyde leads to high in vitro potency. The original moieties at P2, P3 and the P4 N-terminal cap positions in boceprevir are better than other tested chemical moieties for high in vitro potency. In crystal structures, all inhibitors form a covalent adduct with the MPro active site cysteine. The P1 Opal residue, P2 dimethylcyclopropylproline and P4 N-terminal tert-butylcarbamide make strong hydrophobic interactions with MPro, explaining high in vitro potency of inhibitors that contain these moieties. A unique observation was made with an inhibitor that contains a P4 N-terminal isovaleramide. In its MPro complex structure, the P4 N-terminal isovaleramide is tucked deep in a small pocket of MPro that originally recognizes a P4 alanine side chain in a substrate. Although all inhibitors show high in vitro potency, they have drastically different in cellulo potency to inhibit ectopically expressed MPro in human 293T cells. In general, inhibitors with a P4 N-terminal carbamide or amide have low in cellulo potency. This trend is reversed when the P4 N-terminal cap is changed to a carbamate. The installation of a P3 O-tert-butyl-threonine improves in cellulo potency. Three molecules that contain a P4 N-terminal carbamate were advanced to cytotoxicity tests on 293T cells and antiviral potency tests on three SARS-CoV-2 variants. They all have relatively low cytotoxicity and high antiviral potency with EC50 values around 1 µM. A control compound with a nitrile warhead and a P4 N-terminal amide has undetectable antiviral potency. Based on all observations, we conclude that a P4 N-terminal carbamate in a boceprevir derivative is key for high antiviral potency against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Carbutamide , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Carbamates , Humans , Lactams , Leucine , Nitriles , Proline/analogs & derivatives , Protease Inhibitors/chemistry , SARS-CoV-2
4.
Eur J Med Chem ; 240: 114570, 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-1906974

ABSTRACT

As an essential enzyme of SARS-CoV-2, the COVID-19 pathogen, main protease (MPro) is a viable target to develop antivirals for the treatment of COVID-19. By varying chemical compositions at both P2 and P3 positions and the N-terminal protection group, we synthesized 18 tripeptidyl MPro inhibitors that contained also an aldehyde warhead and ß-(S-2-oxopyrrolidin-3-yl)-alaninal at the P1 position. Systematic characterizations of these inhibitors were conducted, including their in vitro enzymatic inhibition potency, X-ray crystal structures of their complexes with MPro, their inhibition of MPro transiently expressed in 293T cells, and cellular toxicity and SARS-CoV-2 antiviral potency of selected inhibitors. These inhibitors have a large variation of determined in vitro enzymatic inhibition IC50 values that range from 4.8 to 650 nM. The determined in vitro enzymatic inhibition IC50 values reveal that relatively small side chains at both P2 and P3 positions are favorable for achieving high in vitro MPro inhibition potency, the P3 position is tolerable toward unnatural amino acids with two alkyl substituents on the α-carbon, and the inhibition potency is sensitive toward the N-terminal protection group. X-ray crystal structures of MPro bound with 16 inhibitors were determined. In all structures, the MPro active site cysteine interacts covalently with the aldehyde warhead of the bound inhibitor to form a hemithioacetal that takes an S configuration. For all inhibitors, election density around the N-terminal protection group is weak indicating possible flexible binding of this group to MPro. In MPro, large structural variations were observed on residues N142 and Q189. Unlike their high in vitro enzymatic inhibition potency, most inhibitors showed low potency to inhibit MPro that was transiently expressed in 293T cells. Inhibitors that showed high potency to inhibit MPro transiently expressed in 293T cells all contain O-tert-butyl-threonine at the P3 position. These inhibitors also exhibited relatively low cytotoxicity and high antiviral potency. Overall, our current and previous studies indicate that O-tert-butyl-threonine at the P3 site is a key component to achieve high cellular and antiviral potency for tripeptidyl aldehyde inhibitors of MPro.


Subject(s)
COVID-19 , SARS-CoV-2 , Aldehydes/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Humans , Protease Inhibitors/chemistry , Threonine
5.
Curr Res Chem Biol ; 2: 100025, 2022.
Article in English | MEDLINE | ID: covidwho-1800124

ABSTRACT

The rapid spread of COVID-19 has caused a worldwide public health crisis. For prompt and effective development of antivirals for SARS-CoV-2, the pathogen of COVID-19, drug repurposing has been broadly conducted by targeting the main protease (MPro), a key enzyme responsible for the replication of virus inside the host. In this study, we evaluate the inhibition potency of a nitrothiazole-containing drug, halicin, and reveal its reaction and interaction mechanism with MPro. The in vitro potency test shows that halicin inhibits the activity of MPro an IC50 of 181.7 â€‹nM. Native mass spectrometry and X-ray crystallography studies clearly indicate that the nitrothiazole fragment of halicin covalently binds to the catalytic cysteine C145 of MPro. Interaction and conformational changes inside the active site of MPro suggest a favorable nucleophilic aromatic substitution reaction mechanism between MPro C145 and halicin, explaining the high inhibition potency of halicin towards MPro.

6.
ACS Cent Sci ; 8(2): 192-204, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1788264

ABSTRACT

As an essential enzyme of SARS-CoV-2, main protease (MPro) triggers acute toxicity to its human cell host, an effect that can be alleviated by an MPro inhibitor. Using this toxicity alleviation, we developed an effective method that allows a bulk analysis of the cellular potency of MPro inhibitors. This novel assay is advantageous over an antiviral assay in providing precise cellular MPro inhibition information to assess an MPro inhibitor. We used this assay to analyze 30 known MPro inhibitors. Contrary to their strong antiviral effects and up to 10 µM, 11a, calpain inhibitor II, calpain XII, ebselen, bepridil, chloroquine, and hydroxychloroquine showed relatively weak to undetectable cellular MPro inhibition potency implicating their roles in interfering with key steps other than just the MPro catalysis in the SARS-CoV-2 life cycle. Our results also revealed that MPI5, MPI6, MPI7, and MPI8 have high cellular and antiviral potency. As the one with the highest cellular and antiviral potency among all tested compounds, MPI8 has a remarkable cellular MPro inhibition IC50 value of 31 nM that matches closely to its strong antiviral effect with an EC50 value of 30 nM. Therefore, we cautiously suggest exploring MPI8 further for COVID-19 preclinical tests.

7.
ACS central science ; 2022.
Article in English | EuropePMC | ID: covidwho-1688464

ABSTRACT

As an essential enzyme of SARS-CoV-2, main protease (MPro) triggers acute toxicity to its human cell host, an effect that can be alleviated by an MPro inhibitor. Using this toxicity alleviation, we developed an effective method that allows a bulk analysis of the cellular potency of MPro inhibitors. This novel assay is advantageous over an antiviral assay in providing precise cellular MPro inhibition information to assess an MPro inhibitor. We used this assay to analyze 30 known MPro inhibitors. Contrary to their strong antiviral effects and up to 10 μM, 11a, calpain inhibitor II, calpain XII, ebselen, bepridil, chloroquine, and hydroxychloroquine showed relatively weak to undetectable cellular MPro inhibition potency implicating their roles in interfering with key steps other than just the MPro catalysis in the SARS-CoV-2 life cycle. Our results also revealed that MPI5, MPI6, MPI7, and MPI8 have high cellular and antiviral potency. As the one with the highest cellular and antiviral potency among all tested compounds, MPI8 has a remarkable cellular MPro inhibition IC50 value of 31 nM that matches closely to its strong antiviral effect with an EC50 value of 30 nM. Therefore, we cautiously suggest exploring MPI8 further for COVID-19 preclinical tests. A cell sorting-based assay was developed to study about 30 SARS-CoV-2 main protease inhibitors, revealing MPI8 as the most potent one and others with likely different mechanisms.

8.
Int J Biol Sci ; 17(5): 1277-1288, 2021.
Article in English | MEDLINE | ID: covidwho-1191953

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) receptor has been identified as the cell entry point for SARS-CoV-2. Although ACE2 receptors are present in the bone marrow, the effects of SARS-CoV-2 on the biological activity of bone tissue have not yet been elucidated. In the present study we sought to investigate the impact of SARS-CoV-2 on osteoblastic activity in the context of fracture healing. MicroRNA-4485 (miR-4485), which we found to be upregulated in COVID-19 patients, negatively regulates osteogenic differentiation. We demonstrate this effect both in vitro and in vivo. Moreover, we identified the toll-like receptor 4 (TLR-4) as the potential target gene of miR-4485, and showed that reduction of TLR-4 induced by miR-4485 suppresses osteoblastic differentiation in vitro. Taken together, our findings highlight that up-regulation of miR-4485 is responsible for the suppression of osteogenic differentiation in COVID-19 patients, and TLR-4 is the potential target through which miR-4485 acts, providing a promising target for pro-fracture-healing and anti-osteoporosis therapy in COVID-19 patients.


Subject(s)
COVID-19/pathology , Cell Differentiation , Fracture Healing , MicroRNAs/metabolism , Osteogenesis , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Toll-Like Receptor 4/metabolism
9.
ChemMedChem ; 16(6): 942-948, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-959133

ABSTRACT

The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro ), we have designed and synthesized a series of SC2MPro inhibitors that contain ß-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active-site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 µM and A549/ACE2 cells at 0.16-0.31 µM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra-high antiviral potency.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Cysteine/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Humans , Microbial Sensitivity Tests , Protein Binding , Pyrrolidinones/chemical synthesis , Pyrrolidinones/metabolism , Pyrrolidinones/pharmacology , SARS-CoV-2/enzymology , Vero Cells
10.
Nat Biomed Eng ; 4(12): 1197-1207, 2020 12.
Article in English | MEDLINE | ID: covidwho-933689

ABSTRACT

Data from patients with coronavirus disease 2019 (COVID-19) are essential for guiding clinical decision making, for furthering the understanding of this viral disease, and for diagnostic modelling. Here, we describe an open resource containing data from 1,521 patients with pneumonia (including COVID-19 pneumonia) consisting of chest computed tomography (CT) images, 130 clinical features (from a range of biochemical and cellular analyses of blood and urine samples) and laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clinical status. We show the utility of the database for prediction of COVID-19 morbidity and mortality outcomes using a deep learning algorithm trained with data from 1,170 patients and 19,685 manually labelled CT slices. In an independent validation cohort of 351 patients, the algorithm discriminated between negative, mild and severe cases with areas under the receiver operating characteristic curve of 0.944, 0.860 and 0.884, respectively. The open database may have further uses in the diagnosis and management of patients with COVID-19.


Subject(s)
COVID-19/pathology , COVID-19/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Algorithms , Deep Learning , Female , Humans , Male , Pandemics , ROC Curve , SARS-CoV-2/pathogenicity , Tomography, X-Ray Computed/methods
11.
J Med Virol ; 93(5): 2805-2809, 2021 05.
Article in English | MEDLINE | ID: covidwho-891891

ABSTRACT

The emerging pandemic of coronavirus disease 2019 (COVID-19) has affected over 200 countries and resulted in a shortage of diagnostic resources globally. Rapid diagnosis of COVID-19 is vital to control the spreading of the disease, which, however, is challenged by limited detection capacity and low detection efficiency in many parts of the world. The pooling test may offer an economical and effective approach to increase the virus testing capacity of medical laboratories without requiring more laboratory resources such as laboratory workers, testing reagents, and equipment. In this study, the sample pools of 6 and 10 were detected by a real-time reverse transcription-polymerase chain reaction assay targeting ORF1ab and N genes of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Each pool consisted of five or nine negative SARS-CoV-2 samples and one positive counterpart with varying viral loads. Two different strategies of sample pooling were investigated and the results were compared comprehensively. One approach was to pool the viral transport medium of the samples in the laboratory, and the other was to pool swab samples during the collection process. For swab pooling strategy, qualitative results of SARS-CoV-2 RNA, specific tests of ORF1ab and N genes, remained stable over the different pool sizes. Together, this study demonstrates that the swab pooling strategy may serve as an effective and economical approach for screening SARS-CoV-2 infections in large populations, especially in countries and regions where medical resources are limited during the pandemic and may thus be potential for clinical laboratory applications.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing/methods , Coronavirus Nucleocapsid Proteins/genetics , Diagnostic Tests, Routine/methods , Humans , Mass Screening/methods , Phosphoproteins/genetics , Polyproteins/genetics , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Specimen Handling/methods , Viral Load , Viral Proteins/genetics
12.
Cell Prolif ; 53(12): e12923, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-873247

ABSTRACT

OBJECTIVES: In order to provide a more comprehensive understanding of the effects of SARS-CoV-2 on oral health and possible saliva transmission, we performed RNA-seq profiles analysis from public databases and also a questionnaire survey on oral-related symptoms of COVID-19 patients. MATERIALS AND METHODS: To analyse ACE2 expression in salivary glands, bulk RNA-seq profiles from four public datasets including 31 COVID-19 patients were recruited. Saliva and oropharyngeal swabs were collected. SARS-CoV-2 nucleic acids in saliva were detected by real-time polymerase chain reaction (RT-PCR). Additionally, a questionnaire survey on various oral symptoms such as dry mouth and amblygeustia was also carried out on COVID-19 patients. RESULTS: ACE2 expression was present at detectable levels in the salivary glands. In addition, of four cases with positive detection of salivary SARS-CoV-2 nucleic acids, three (75%) were critically ill on ventilator support. Furthermore, we observed the two major oral-related symptoms, dry mouth (46.3%) and amblygeustia (47.2%), were manifested by a relatively high proportion of 108 COVID-19 patients who accepted the questionnaire survey. CONCLUSIONS: This study confirms the expression of ACE2 in the salivary glands and demonstrates the possibility of SARS-CoV-2 infection of salivary glands. Saliva may be a new source of diagnostic specimens for critically ill patients, since it can be easily collected without any invasive procedures. In addition, dry mouth and amblygeustia can be considered as initial symptoms of COVID-19 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , SARS-CoV-2/pathogenicity , Saliva/virology , Female , Humans , Male , Real-Time Polymerase Chain Reaction/methods
13.
Matter ; 3(5): 1589-1600, 2020 Nov 04.
Article in English | MEDLINE | ID: covidwho-813728

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a severe threat to human health worldwide. Early etiological diagnosis plays a critical role in controlling COVID-19 pandemic. However, etiological diagnosis has been largely compromised by high "false-negative" rates of viral nucleic acid testing, resulting from limited sampling efficiency using conventional oropharyngeal swabs. Here, we engineer regular swabs by using a microneedle (MN) patch to significantly improve the quality and quantity of virus collection. The combination of MNs with different crosslinking levels endows the patches with dual capability of mucus penetration and virus extraction. Moreover, the antibody (Ab) against viral spike protein was integrated into the patch, conferring MNs with an active virus capture potential. By taking advantage of the biological and engineered species, we believe that the designed MN/Ab swabs could serve as a promising tool to improve current sampling efficiency with fewer false negatives, contributing to the containment of the COVID-19 pandemic.

15.
EClinicalMedicine ; 23: 100375, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-155432

ABSTRACT

BACKGROUND: Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a pandemic affecting over 200 countries. Many cities have established designated fever clinics to triage suspected COVID-19 patients from other patients with similar symptoms. However, given the limited availability of the nucleic acid test as well as long waiting time for both the test and radiographic examination, the quarantine or therapeutic decisions for a large number of mixed patients were often not made in time. We aimed to identify simple and quickly available laboratory biomarkers to facilitate effective triage at the fever clinics for sorting suspected COVID-19 patients from those with COVID-19-like symptoms. METHODS: We collected clinical, etiological, and laboratory data of 989 patients who visited the Fever Clinic at Wuhan Union Hospital, Wuhan, China, from Jan 31 to Feb 21. Based on polymerase chain reaction (PCR) nucleic acid testing for SARS-CoV-2 infection, they were divided into two groups: SARS-CoV-2-positive patients as cases and SARS-CoV-2-negative patients as controls. We compared the clinical features and laboratory findings of the two groups, and analyzed the diagnostic performance of several laboratory parameters in predicting SARS-CoV-2 infection and made relevant comparisons to the China diagnosis guideline of having a normal or decreased number of leukocytes (≤9·5 109/L) or lymphopenia (<1·1 109/L). FINDINGS: Normal or decreased number of leukocytes (≤9·5 109/L), lymphopenia (<1·1 109/L), eosinopenia (<0·02 109/L), and elevated hs-CRP (≥4 mg/L) were presented in 95·0%, 52·2%, 74·7% and 86·7% of COVID-19 patients, much higher than 87·2%, 28·8%, 31·3% and 45·2% of the controls, respectively. The eosinopenia produced a sensitivity of 74·7% and specificity of 68·7% for separating the two groups with the area under the curve (AUC) of 0·717. The combination of eosinopenia and elevated hs-CRP yielded a sensitivity of 67·9% and specificity of 78·2% (AUC=0·730). The addition of eosinopenia alone or the combination of eosinopenia and elevated hs-CRP into the guideline-recommended diagnostic parameters for COVID-19 improved the predictive capacity with higher than zero of both net reclassification improvement (NRI) and integrated discrimination improvement (IDI). INTERPRETATION: The combination of eosinopenia and elevated hs-CRP can effectively triage suspected COVID-19 patients from other patients attending the fever clinic with COVID-19-like initial symptoms. This finding would be particularly useful for designing triage strategies in an epidemic region having a large number of patients with COVID-19 and other respiratory diseases while limited medical resources for nucleic acid tests and radiographic examination.

SELECTION OF CITATIONS
SEARCH DETAIL